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Abstract

We give conditions for existence of global solutions and for blow up in finite time of

semi-linear systems of the form ∂ui(t, x)/∂t = k(t)
(
−(−∆)α/2

)
ui(t, x)+uβij (t, x), with

Dirichlet boundary conditions on a bounded domain D ⊂ Rd, where k : [0,∞)→ [0,∞)

is continuous, 0 < α ≤ 2, βi > 1, i ∈ {1, 2} and j ∈ {1, 2}\{i}. Our approach uses in

an essential way certain properties of a related time-inhomogeneous Markov process.
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1 Introduction

In this paper we investigate semi-linear equations of the form

∂u(t, x)

∂t
= k(t)∆αu(t, x) + uβ(t, x), (1)

u(0, x) = f(x), x ∈ D,

where k : [0,∞) → [0,∞) is continuous, D ⊆ Rd is an open connected set, ∆α is the

fractional power −(−∆)α/2 of the Laplacian, 0 < α ≤ 2, β > 1 is a constant and f ≥ 0 is

a bounded measurable function. Equations of this kind are relevant in applications as they
allow for nonlocal integro-differential diffusion terms in partial differential equations that

arise in many mathematical models; see [2, 11, 20] and the references therein. Moreover,

their positive solutions can exhibit finite-time blow up, in the sense that ‖u(t, ·)‖∞ becomes

∞ in a bounded time interval. For these reasons, determining for which equation parameters
a solution either is global, or undergoes blow up in finite time, constitutes a very interesting

and challenging topic in contemporary mathematical research; see [1, 6, 10, 17] for surveys.
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†División Académica de Ciencias Básicas, Universidad Juárez Autónoma de Tabasco, Villahermosa, Cen-
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1



 
 

It is know that the factor k(t) has a strong effect on the asymptotic behavior of positive

solutions of (1): when D = Rd, we proved in [12] that integrability of k already excludes

existence of global solutions, and if
∫ t
0
k(s) ds ∼ tρ as t→∞ for some ρ ≥ 1, then the blow

up behavior of (1) (i.e. finite-time blow up vs. existence of global solutions) parallels that

of the equation ∂u(t)/∂t = ∆α/ρu + uβ. If D is a bounded smooth domain, H. Fujita [7]

proved, in the case of k ≡ 1 and α = 2, that for any nontrivial, nonnegative initial condition

f ∈ L2(D) such that ∫
D

f(x)ϕ0(x) dx > λ
1/β
0 , (2)

the solution of equation (1) blows up in finite time. Here λ0 > 0 is the first eigenvalue of the

Laplacian on D, and ϕ0 the corresponding eigenfunction normalized so that ‖ϕ0‖L1 = 1. A

similar condition was obtained by López-Mimbela and Torres [13] for the case of 0 < α ≤ 2,

under the additional assumption that D is a bounded domain of class C1,1.
In this paper we investigate the dichotomy finite-time blow up versus existence, globally in

time, of positive solutions of the nonautonomous semi-linear system with Dirichlet boundary
condition

∂u1 (t, x)

∂t
= k (t) ∆αu1 (t, x) + uβ12 (t, x) (3)

∂u2 (t, x)

∂t
= k (t) ∆αu2 (t, x) + uβ21 (t, x) , t > 0, x ∈ D

ui (0, x) = fi (x) , x ∈ D, ui|∂D ≡ 0, i = 1, 2.

Here βi > 1 are constants, D ⊂ Rd is a bounded C1,1 domain with d ≥ 2, and the initial

values fi, i = 1, 2, are nonnegative functions belonging to the space C0 (D) of continuous

functions on D that vanish at ∂D. As before, the function k : [0,∞) → [0,∞) is assumed

to be continuous and not identically zero. We define

K (t, s) =

∫ t

s

k (r) dr, 0 ≤ s ≤ t. (4)

Our main result, Theorem 4 below, gives information in terms of the system parameters, on

how large the initial values should be in order to get finite-time explosion of system (3). In

particular, system (3) exhibits finite-time blow up provided that

min
i∈{1,2}

∫
D

fi(x)ϕ0(x) dx > Const.

[∫ ∞
0

min
i∈{1,2}

(
e−λ0K(r,0)

)βi−1
dr

]−(β1+1)/(β1β2−1)

.

This shows that, for an integrable k, positive solutions corresponding to initial values satisfy-
ing the above inequality cannot be global. The approach we use to prove this result consists

of an adaptation of the eigenfunction method (see e.g. [17], §17), and relies on the property

that the semigroup with generator ∆α is intrinsically ultracontractive for d ≥ 2 [4].

In Section 3 we prove existence of local solutions of (3) using an adaptation of the

classical fixed-point argument. Conditions ensuring existence of a global positive solution
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of (3) are given in Section 4. Theorem 4 is proved in Section 5. In the next section,

we recall several basic properties of a Markov evolution system and its associated (time-

inhomogeneous) Markov process, that we will need to develop our arguments.

2 Killed aditive process

Recall [19] that the linear operator ∆α is the generator of the d–dimensional symmetric α-

stable process Z ≡ {Z(t)}t≥0. Let {W (t)}t≥0 be the time-inhomogeneous Markov process in

Rd, corresponding to the family of generators {k (t) ∆α}t≥0. The family of random variables

{W (t)}t≥0 constitutes an additive process such that

P [W (t) ∈ B] = P [Z (K (t, 0)) ∈ B] , B ∈ B(Rd), t ≥ 0, (5)

where B(Rd) stands for the system of Borel sets in Rd. For any t > 0 let us denote by

p (t, x, y) ≡ p (t, x− y) , x, y ∈ Rd, the positive and continuous density function of Z(t).

Letting

p (s, x, t, y) ≡ p (K (t, s) , x, y) , 0 ≤ s ≤ t, x, y ∈ Rd,

we see that p (s, x, t, y) is a positive and continuous transition density function for the process

{W (t)}t≥0 .
Let us define

τD = inf {t > 0 : W (t) /∈ D} and τ̂D = inf {t > 0 : Z (t) /∈ D} .

Using (5) we obtain that

τ̂D = K (τD, 0) . (6)

Let {SD (t)}t≥0 be the semigroup associated to the process {Z (t)}t≥0 killed on exiting D,

and let pD (t, x, y) be the transition density function of {SD (t)}t≥0 , i.e.

SD (t) f (x) = Ex [f (Z (t)) ; t < τ̂D]

=

∫
D

f (y) pD (t, x, y) dy, x ∈ D, t > 0, f ∈ B+
(
Rd
)
,

where P x denotes the distribution of {Z (t)}t≥0 such that P x [Z (0) = x] = 1, Ex repre-

sents the expectation with respect to P x and B+
(
Rd
)

is the space of nonnegative bounded

measurable functions on Rd. It is known that

pD (t, x, y) = pD (t, y, x) and 0 < pD (t, x, y) ≤ p (t, x, y) , t > 0, x, y ∈ D,

and that {SD (t)}t≥0 is a strongly continuous Feller semigroup of contractions on the space

L2 (D); see e.g. [9], p. 326. Moreover, the linear operators SD (t), t ≥ 0, are compact, and

there exists an orthonormal basis of eigenfunctions {ϕn}∞n=0 with corresponding eigenvalues{
e−λnt

}∞
n=0

satisfying

0 < λ0 < λ1 ≤ λ2 ≤ λ3 ≤ . . . , and lim
n→∞

λn =∞.
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All eigenfunctions ϕn are continuous and real-valued. The eigenfunction ϕ0 is strictly positive
on D.

Let us consider the aditive process {W (t)}t≥0 killed on exiting D; that is, let

WD (t) =

{
W (t) , on {t < τD}
∂, on {t ≥ τD} ,

where ∂ is a cemetery point. The state space of {WD(t)}t≥0 is the set D∂ = D ∪ {∂}, and

its transition function is given by

PD (s, x, t,Γ) = P s,x [W (t) ∈ Γ; t < τD] , 0 ≤ s < t, x ∈ D, Γ ∈ B (D) ,

where B (D) denotes the Borel σ-field on D, and P s,x is the distribution of {W (t)}t≥0 such

that P s,x (W (s) = x) = 1. We define, for f ∈ L2 (D) ,

UD (t, s) f (x) =

∫
D

f (y)P s,x [W (t) ∈ dy; t < τD] , 0 ≤ s < t, x ∈ D.

Using (6) it is easy to see that, for t > s ≥ 0, x ∈ D and Γ ∈ B (D) ,

PD (s, x, t,Γ) = P s,x [W (t) ∈ Γ; t < τD]

= P x [Z (K (t, s)) ∈ Γ;K (t, s) < τ̂D]

= PD (K (t, s) , x,Γ) .

Hence for all f ∈ L2 (D) ,

UD (t, s) f (x) = SD (K (t, s)) f (x) , x ∈ D. (7)

For t > 0 and x, y ∈ Rd, let rD (t, x, y) = Ex [p (t− τ̂D, Z (τ̂D) , y) ; τ̂D < t] . It is known ([4],

Theorem 2.4) that

pD (t, x, y) = p (t, x, y)− rD (t, x, y) .

We define
rD (s, x, t, y) = Es,x [p (τD,W (τD) , t, y) ; τD < t]

and
pD (s, x, t, y) = p (s, x, t, y)− rD (s, x, t, y) .

Since

Es,x [p (τD,W (τD) , t, y) ; τD < t] = Ex [p (K (t, s)− τ̂D, Z (τ̂D) , y) ; τ̂D < K (t, s)] ,

we have that

pD (s, x, t, y) = p (K (t, s) , x, y)− rD (K (t, s) , x, y) = pD (K (t, s) , x, y) .

Proposition 1 The function pD (s, x, t, y) is a density of PD (s, x, t,Γ) , wich is strictly pos-

itive, symmetric and continuous on D ×D.
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Proof. This follows easily from the fact that pD (t, x, y) is a density of PD (t, x,Γ), wich is

strictly positive, symmetric and continuous on D ×D.
Using (7) and the fact that {SD (t)}t≥0 is a strongly continuous Feller semigroup of con-

tractions on L2 (D), we obtain that {UD (t, s)}t≥s≥0 is a Feller evolution family of contractions

on L2 (D). In [4] and [9] it is proved that {SD (t)}t≥0 is an intrinsically ultracontractive semi-

group, meaning that for every t > 0 there are constants c = c (t,D, α) and C = C (t,D, α)

such that
cϕ0 (x)ϕ0 (y) ≤ pD (t, x, y) ≤ Cϕ0 (x)ϕ0 (y) , t > 0, x, y ∈ D.

The above property is equivalent to the fact that, for all t > 0, there exists a positive constant

c = c (t,D, α) such that

|SD (t) f (x)| < cϕ0 (x) ‖f‖2 , x ∈ D; (8)

see [5], Theorem 3.2.

3 Local existence of a mild solution

The integral representation of system (3) is given, for fi ∈ L2 (D), by

ui (t, x) = UD (t, 0) fi (x) +

∫ t

0

UD (t, r)uβii′ (r, x) dr, t ≥ 0, x ∈ D, (9)

where, here and in the sequel, i ∈ {1, 2} and i′ = 3− i. A solution of the integral system (9)

is known as a mild solution of (3).

In this section we are going to asume that fi ∈ Cb(D), where Cb(D) is the space of

real-valued continuous and bounded functions defined on D.
Our proof of existence of local solutions is an adaptation, to our case, of the proof given

in [21]. Let τ > 0 and

Eτ ≡ {(u1, u2) : [0, τ ]→ Cb(D)× Cb(D), |||(u1, u2)||| <∞},

where
|||(u1, u2)||| ≡ sup

0≤t≤τ
{||u1(t, ·)||∞ + ||u2(t, ·)||∞}.

The couple (Eτ , ||| |||) is a Banach space and Pτ ≡ {(u1, u2) ∈ Eτ : u1 ≥ 0, u2 ≥ 0} and

CR ≡ {(u1, u2) ∈ Eτ : |||(u1, u2)||| ≤ R}, R > 0, are closed subsets of Eτ .

Theorem 2 There exists a constant τ = τ(f1, f2) > 0 such that the integral system (9) has

a local solution in Cb([0, τ ]×D)× Cb([0, τ ]×D).

Proof. Define the operator Ψ on Cb([0, τ ]×D)× Cb([0, τ ]×D) by

Ψ (u1, u2) = (UD (t, 0) f1 (x) , UD (t, 0) f2 (x))

+

(∫ t

0

UD (t, r)uβ12 (r, x) dr,

∫ t

0

UD (t, r)uβ21 (r, x) dr

)
.
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Choosing τ > 0 small enough and R > 0 sufficiently large, it is easy to verify that Ψ is a

contraction mapping on CR ∩ Pτ . In fact, if (u1, u2), (ũ1, ũ2) ∈ CR ∩ Pτ , then

|||Ψ(u1, u2)−Ψ(ũ1, ũ2)||| ≤ sup
0≤t≤τ

∫ t

0

‖uβ12 (r, ·)− ũβ12 (r, ·))‖∞dr

+ sup
0≤t≤τ

∫ t

0

‖uβ21 (r, ·)− ũβ21 (r, ·))‖∞dr

and, using the elementary inequality

|ap − bp| ≤ p(a ∨ b)p−1|a− b|,

which holds for all a, b > 0 and p ≥ 1, we get

|||Ψ(u1, u2)−Ψ(ũ1, ũ2)||| ≤ β1R
β1−1

∫ τ

0

‖u2(r, ·)− ũ2(r, ·)‖∞dr

+β2R
β2−1

∫ τ

0

‖u1(r, ·)− ũ1(r, ·)‖∞dr (10)

≤ (β1R
β1−1 ∨ β2Rβ2−1)|||(u1, u2)− (ũ1, ũ2)|||τ.

From (10), we observe that for τ > 0 small enough and R > 0 sufficiently large, Ψ is a

contraction mapping on CR ∩ Pτ , hence the result follows by the fixed point theorem.

4 Global existence of the mild solution

Here we suppose again that fi ∈ Cb(D). Our proof of the next theorem follows closely the

proof of Theorem 2.2 in [12].

Theorem 3 Let fi be nonnegative, and let g ≡ f1 ∨ f2. If

(βi − 1)

∫ ∞
0

‖UD(t, 0)g‖βi−1∞ dt < 1, i = 1, 2,

then the solution of the integral system (9) is global.

Proof. Putting

Bi(t) =

[
1− (βi − 1)

∫ t

0

‖UD(r, 0)g‖βi−1∞ dr

]− 1
βi−1

we get Bi(0) = 1 and

d

dt
Bi(t) = − 1

βi − 1

[
1− (βi − 1)

∫ t

0

‖UD(r, 0)g‖βi−1∞ dr

]− 1
βi−1

−1

[−(βi − 1)‖UD(t, 0)g‖βi−1∞ ]

= ‖UD(t, 0)g‖βi−1∞ Bβi
i (t),
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which gives

Bi(t) = 1 +

∫ t

0

‖UD(r, 0)g‖βi−1∞ Bβi
i (r)dr, i = 1, 2. (11)

Since the evolution system {UD(t, s)}t≥s≥0 is positive-preserving, we can consider a contin-

uous function vi : [0,∞)×D → [0,∞) such that vi(t, ·) ∈ Cb(D) for all t ≥ 0 and

0 ≤ vi(t, x) ≤ (B1(t) ∧B2(t))UD(t, 0)g(x), t ≥ 0.

In this way

Fivi(t, x) := UD(t, 0)fi(x) +

∫ t

0

UD(t, r)vβii′ (r, x)dr

satisfies

0 ≤ Fivi(t, x) ≤ UD(t, 0)g(x) +

∫ t

0

Bβi
i (r)UD(t, r) (UD(r, 0)g(x))βi dr

≤ UD(t, 0)g(x) +

∫ t

0

Bβi
i (r)UD(t, r)UD(r, 0)g(x)‖UD(r, 0)g‖βi−1∞ dr

= UD(t, 0)g(x)

[
1 +

∫ t

0

‖UD(r, 0)g‖βi−1∞ Bβi
i (r)dr

]
= Bi(t)UD(t, 0)g(x),

where we used (11) in the last equality. Therefore,

0 ≤ Fivi(t, x) ≤ (B1(t) ∨B2(t))UD(t, 0)g(x), t ≥ 0, x ∈ D.

We now define

ui,0(t, x) = UD(t, 0)fi(x) and ui,n+1(t, x) = Fiui,n(t, x), n = 0, 1, . . . .

Using that ui,0(t, x) ≤ ui,1(t, x) for all t ≥ 0, x ∈ D, and the fact that UD(t, s) preserves

positivity, it follows by induction that ui,n(t, x) ≤ ui,n+1(t, x), n ≥ 0. Hence

ui(t, x) ≡ lim sup
n→∞

ui,n(t, x) ≤ (B1(t) ∨B2(t))UD(t, 0)g(x) <∞

for all t ≥ 0 and x ∈ D. From the monotone convergence theorem we conclude that ui(t, x)

satisfies

ui(t, x) = UD(t, 0)fi(x) +

∫ t

0

UD(t, r)uβii′ (r, x)dr, t ≥ 0, x ∈ D.

Therefore, (u1, u2) is a global mild solution of (3).

5 Blow up in finite time of the positive mild solution

Without loss of generality, we assume in (3) that β2 ≥ β1 > 1.
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Theorem 4 Let f1, f2 ∈ C0(D) be two nonnegative functions. If

min
i∈{1,2}

〈fi, ϕ0〉 >

 1(
β1β2−1
β1+1

)(
β1+1
β2+1

) β1
β1+1 ∫∞

0
min
i∈{1,2}

(
e−λ0K(r,0)

‖ϕ0‖1

)βi−1
dr


β1+1
β1β2−1

, (12)

then the mild solution of (3) blows up in finite time.

Remark Notice that the above theorem is consistent with the corresponding result for the

case of a single equation obtained in [13].

Before starting the proof of Theorem 4, notice the following.
Let t0 > 0. If for some 0 < t ≤ t0,

sup
x∈D

u1 (t, x) + sup
x∈D

u2 (t, x) =∞,

then the mild solution of (3) blows up in finite time and there is nothing to prove. Therefore,

assume that
sup

x∈D, 0<t≤t0
u1 (t, x) + sup

x∈D, 0<t≤t0
u2 (t, x) <∞.

Hence (see [14], pages 4 and 5),

ui (t+ t0, x) = UD (t+ t0, t0)ui (t0, x) (13)

+

∫ t

0

UD (t+ t0, r + t0)u
βi
i′ (r + t0, x) dr, t ≥ 0, x ∈ D.

Moreover, due to (9) and the fact that the integral in the right of (9) is positive,

ui (t0, x) ≥ UD (t0, 0) fi (x) , x ∈ D. (14)

Let (v1, v2) be the mild solution of (3) with initial values vi (0, ·) = UD (2t0, t0) fi (·). Then

vi (t+ t0, x) = UD (t+ t0, t0) vi (t0, x) (15)

+

∫ t

0

UD (t+ t0, r + t0) v
βi
i′ (r + t0, x) dr, t ≥ 0, x ∈ D.

Since {UD (t, s)}t≥s≥0 is an evolution system of contractions on L2 (D), we have that for all

f ∈ L2 (D),

‖UD (t, r) f‖2 = ‖UD (t, s)UD (s, r) f‖2 ≤ ‖UD (s, r) f‖2 , t ≥ s ≥ r ≥ 0.

Now, for each x ∈ D, letting g(y) = 1
Vol(D)

f(x), y ∈ D, we get that g ∈ L2 (D) and

UD (t, r) f (x) = ‖UD (t, r) g‖2 ≤ ‖UD (s, r) g‖2 = UD (s, r) f (x) (16)
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for all t ≥ s ≥ r ≥ 0. From (16) we obtain

vi (t0, x) =

∫
D

pD (K (t0, 0) , x− y)UD (2t0, t0) fi (y) dy

+

∫ t0

0

(∫
D

pD (K (t0, r) , x− y) vβii′ (r, y) dy

)
dr

= UD (2t0, 0) fi (x) +

∫ t0

0

UD (t0, r) v
βi
i′ (r, x) dr

≤ UD (t0, 0) fi (x) +

∫ t0

0

UD (t0, 0) vβii′ (r, x) dr,

which gives vi (t0, x) ≤ ui (t0, x), x ∈ D. Plugging this into (15) yields

vi (t+ t0, x) ≤ UD (t+ t0, t0)ui (t0, x)

+

∫ t

0

UD (t+ t0, r + t0) v
βi
i′ (r + t0, x) dr.

It follows that
vi (t+ t0, x) ≤ ui (t+ t0, x) , t ≥ 0, x ∈ D.

Therefore, it suffices to proof that, under the hypothesis of Theorem 4, the mild solution of

(3) blows up in finite time for all initial conditions of the form ui (0, x) = UD (2t0, t0) fi (x),

x ∈ D, where f1 and f2 are not identically zero. Moreover, it is enough to show that (3)

blows up for all initial values of the form UD (2t0, t0)hi, where h1, h2 are any two continuous

functions with support contained in D, and such that 0 ≤ hi ≤ f
i
, i = 1, 2.

On the other hand, intrinsic ultracontractivity (8) implies that

UD (2t0, t0)hi
ϕ0

=
SD (K (2t0, t0))hi

ϕ0

∈ Cb (D) .

Thus, we can assume that the initial conditions in (3) are of the form fi = giϕ0, with

0 ≤ gi ∈ Cb (D). In particular, we can assume that 0 ≤ gi ≤ 1.

We define

T (t, s) g (x) =
eλ0K(t,s)

ϕ0 (x)
SD (K (t, s)) (gϕ0) (x) , x ∈ D, g ∈ Cb (D) , t ≥ 0

and

E [h] :=

∫
h (x)ϕ2

0 (x) dx, h ∈ Cb (D) .

It is known ([13], p. 287) that ϕ2
0 (x) dx is the unique invariant measure of the semigroup

{Q (t)}t≥0 given by

Q (t) g (x) =
eλ0t

ϕ0 (x)
SD (t) (gϕ0) (x) , x ∈ D, g ∈ Cb (D) , t ≥ 0,
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and that {Q (t)}t≥0 is a strongly Feller’s semigroup with generator

∆̂α (·) =

(
∆α + λ0

)
(·ϕ0)

ϕ0

,

where ∆α is the infinitesimal generator of the semigroup {SD (t)}t≥0 .

Lemma 5 The family of operators {T (t, s)}t≥s≥0 is an evolution family on Cb (D) that

solves the homogeneous nonautonomous Cauchy system

∂w (t, x)

∂t
= k (t)

(
∆α + λ0

)
(·ϕ0)w (t, x) , t > s ≥ 0, x ∈ D,

w (s, x) = g (x) , g ∈ Cb (D) , x ∈ D.

Proof. The fact that {T (t, s)}t≥s≥0 is an evolution family on Cb (D) follows directly from

the semigroup property and strong continuity of {SD (t)}t≥0. For the last statement we have

∂T (t, s) g

∂t
=

λ0k (t) exp (λ0K (t, s))

ϕ0

SD (K (t, s)) (gϕ0)

+
k (t) exp (λ0K (t, s))

ϕ0

∆αSD (K (t, s)) (gϕ0)

= T (t, s)
[
k (t)

(
∆α + λ0

)
(·ϕ0)

]
(g) , t ≥ s ≥ 0, g ∈ Cb (D) .

Lemma 6 For any t ≥ s ≥ 0 and g ∈ D
(

∆̂α

)
,

E [T (t, s) g] = E [g] .

Proof. This is a consequence of the fact that ϕ2
0 (x) dx is the unique invariant measure of

{Q (t)}t≥0, and of the relation T (t, s) g = Q (K (t, s)) g.

In the sequel we are going to assume that the initial values in (3) are of the form fi = giϕ0

with gi ∈ D
(

∆̂α

)
, i = 1, 2. Notice that 〈fi, ϕ0〉 = E [gi], i = 1, 2.

We define

wi (t, x) =
eλ0K(t,0)ui (t, x)

ϕ0 (x)
and z (t, x) = e−λ0K(t,0)ϕ0 (x) , x ∈ D, t ≥ 0,
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where (u1, u2) is the mild solution of (3), i.e., (u1, u2) solves the integral system (9). Multi-

plying both sides of (9) by ϕ0 (x)−1exp (λ0K (t, 0)), we get

wi (t, x)

= T (t, 0) gi (x) +

∫ t

0

exp (λ0K (t, 0))

ϕ0 (x)
UD (t, r)uβii′ (r, x) dr

= T (t, 0) gi (x) +

∫ t

0

exp (λ0K (t, 0))

ϕ0 (x)
UD (t, r)

(
uβii′ (r, x)

ϕ
βi−1

0 (x)
ϕ
βi−1

0 (x)

)
dr

= T (t, 0) gi (x) +

∫ t

0

exp (λ0K (t, 0)) exp (−λ0K (r, 0))

·exp (λ0K (r, 0))

ϕ0 (x)
UD (t, r)

(
uβii′ (r, x)

ϕ
βi−1

0 (x)
ϕ
βi−1

0 (x)

)
dr

= T (t, 0) gi (x) +

∫ t

0

exp (λ0K (r, 0))
exp (λ0K (t, r))

ϕ0 (x)
UD (t, r)

(
uβii′ (r, x)

ϕβi−10 (x)
ϕβi−10 (x)

)
dr

= T (t, 0) gi (x) +

∫ t

0

exp (λ0K (r, 0))T (t, r)

(
uβii′ (r, x)

ϕβi0 (x)
ϕβi−10 (x)

)
dr

= T (t, 0) gi (x) +

∫ t

0

T (t, r)

(
exp (λ0K (r, 0) βi)u

βi
i′ (r, x)

ϕβi0 (x)

)
· exp (−λ0K (r, 0) (βi − 1))ϕβi−10 (x) dr

= T (t, 0) gi (x) +

∫ t

0

T (t, r)wβii′ (r, x) zβi−1 (r, x) dr.

Proof of Theorem 4. From the last equality we get

E [wi (t, ·)] = E [T (t, 0) gi] +

∫ t

0

E
[
T (t, r)wβii′ (r, ·) zβi−1 (r, ·)

]
dr. (17)

Due to Lemma 6,

E
[
T (t, r)wβii′ (r, ·) zβi−1 (r, ·)

]
= E

[
w
βii
i′ (r, ·) zβi−1 (r, ·)

]
= e−λ0K(r,0)(βi−1)

∫
[wi′ (r, x)ϕ0 (x)]βi ϕ0 (x) dx

≥ e−λ0K(r,0)(βi−1) ‖ϕ0‖1
(∫

wi′ (r, x)
ϕ2
0 (x)

‖ϕ0‖1
dx

)βi
=

(
exp (−λ0K (r, 0))

‖ϕ0‖1

)βi−1
E [wi′ (r, ·)]βi ,
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where we have used Jensen’s inequality (with respect to the probability measure ϕ0(x)
‖ϕ0‖1

dx).

Let hi (t) := E [wi (t, ·)]. Differentiating (17) with respect to t, we get

h′i (t) ≥
(

exp (−λ0K (t, 0))

‖ϕ0‖1

)βi−1
hβii′ (t) (18)

hi (0) = 〈fi, ϕ0〉 .

Let c(t) = mini∈{1,2}

{(
e−λ0K(t,0)

‖ϕ0‖1

)βi−1}
, N = mini∈{1,2} {〈fi, ϕ0〉} and consider the ordinary

differential system

p′1(t) = c(t)pβ12 (t), p′2(t) = c(t)pβ21 (t), pi (0) = N, i = 1, 2. (19)

It follows that ∫ t

0

pβ21 (r)p′1(r)dr =

∫ t

0

pβ12 (r)p′2(r)dr,

that is
1

β2 + 1

[
pβ2+1
1 (t)−Nβ2+1

]
=

1

β1 + 1

[
pβ1+1
2 (t)−Nβ1+1

]
.

Since 0 ≤ N ≤ 1 and by assumption β2 ≥ β1, we get

1

β2 + 1
pβ2+1
1 (t) ≤ 1

β1 + 1
pβ1+1
2 (t)

or

p2(t) ≥
(
β1 + 1

β2 + 1

) 1
β1+1

p
β2+1
β1+1

1 (t).

Substituting this into the first equation of (19), we get

p′1 (t) ≥ c(t)

(
β1 + 1

β2 + 1

) β1
β1+1

p
β1(β2+1)
β1+1

1 (t),

which is the same as

p
−β1(β2+1)

β1+1

1 (t)p′1 (t) ≥ c(t)

(
β1 + 1

β2 + 1

) β1
β1+1

.

Integrating the above inequality from 0 to t yields

β1 + 1

1− β1β2

[
p

1−β1β2
β1+1

1 (t)−N
1−β1β2
β1+1

]
≥
(
β1 + 1

β2 + 1

) β1
β1+1

∫ t

0

c(r)dr.

Thus, in view of β2 ≥ β1 > 1,

p1 (t) ≥ 1[
N

1−β1β2
β1+1 −

(
β1β2−1
β1+1

)(
β1+1
β2+1

) β1
β1+1 ∫ t

0
c(r)dr

] β1
β1β2−1

. (20)
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Since the function
∫ t
0
c(r) dr is continuous and increases to

∫∞
0
c(r) dr, (20) implies finite-time

blow up of (3) provided that

N
1−β1β2
β1+1 <

(
β1β2 − 1

β1 + 1

)(
β1 + 1

β2 + 1

) β1
β1+1

∫ t

0

c(r) dr

or, equivalently,

min
i∈{1,2}

〈fi, ϕ0〉 >

 1(
β1β2−1
β1+1

)(
β1+1
β2+1

) β1
β1+1 ∫∞

0
min
i∈{1,2}

(
e−λ0K(r,0)

‖ϕ0‖1

)βi−1
dr


β1+1
β1β2−1

.
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